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Abstract
This paper deals with Student t-processes as studied in Cufaro Petroni (2007
J. Phys. A. Math. Theor. 40 2227–50). We prove and extend some conjectures
expressed by Cufaro Petroni about the asymptotical behavior of a Student
t-process and the expansion of its density. First, the explicit asymptotic
behavior of any real positive convolution power of a Student t-density with
any real positive degrees of freedom is given in the multivariate case; then
the integer convolution power of a Student t-distribution with odd degrees of
freedom is shown to be a convex combination of Student t-densities with odd
degrees of freedom. At last, we show that this result does not extend to the
case of non-integer convolution powers.

PACS numbers: 02.50.Ey, 05.40.Fb
Mathematics Subject Classification: 60E07, 60G10, 60G51, 60J75

1. Introduction

In a recent contribution (Cufaro Petroni 2007), Cufaro Petroni derived several results about the
behavior of some non-stable Lévy processes with Student t-marginals and random walks with
Student t-increments. We recall that the Student t-density with f = 2ν degrees of freedom
(ν > 0) is3

pν(x) = Aν(1 + x2)−(ν+ 1
2 ), Aν = �

(
ν + 1

2

)
�

(
1
2

)
�(ν)

.

The family of Student t-densities includes the Cauchy density for f = 1 and the scaled
density 1√

2ν
pν

(
x√
2ν

)
converges to the Gaussian density as f → +∞. All Student t-distributions

3 Usually, the Student t-distribution is defined by the scaled version 1√
2ν

pν(
x√
2ν

), see Feller (1950, p 49).

1751-8113/08/265004+10$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/41/26/265004
mailto:berg@math.ku.dk
mailto:vignat@univ-mlv.fr
http://stacks.iop.org/JPhysA/41/265004


J. Phys. A: Math. Theor. 41 (2008) 265004 C Berg and C Vignat

are heavy tailed. Grosswald (1976) proved that they are infinitely divisible. They also have
the stronger property of being self-decomposable, cf Steutel and van Harn (2004).

Stochastic processes with Student t-marginals and various types of dependence structures
have been proposed in Heyde and Leonenko (2005), most of them with dependent increments.
On the other side, Cufaro Petroni’s paper deals with Lévy Student t-processes, which exist
by the infinite divisibility of the Student t-distribution. In both cases, these processes have
applications in finance (Schoutens 2003) and physics (Vivoli et al 2006).

2. Three conjectures by Cufaro Petroni

Let us consider the random walk

ZN =
N∑

i=1

Xi,

where N ∈ N and each independent step Xi follows a Student t-distribution with f = 2n + 1
degrees of freedom, n ∈ N. Cufaro Petroni obtained precise results about the process ZN only
in the case of f = 3 degrees of freedom; however, he expressed three conjectures about the
extension of these results to more general cases: the first conjecture is

Conjecture 1. For all N ∈ N and for all f = 2n + 1, n ∈ N, the distribution of N−1ZN is a
convex combination of Student t-distributions with odd degrees of freedom.

The two remaining conjectures concern the distribution of ZN for non-integer values of
N, which makes sense because the Student t-distribution is infinitely divisible: the c-fold
convolution of the distribution pν is defined, for any real positive c, as the inverse Fourier
transform

p∗c
ν (x) = 1

2π

∫ +∞

−∞
eiux[ϕν(u)]c du,

where ϕν(u) is the characteristic function of the Student t-distribution

ϕν(u) = kν(|u|)
with

kν(u) = 21−ν

�(ν)
uνKν(u), u > 0. (1)

Here Kν is the modified Bessel function of the second kind also called the Macdonald function.
Expression (1) reduces to elementary functions exactly when ν = n + 1/2, n = 0, 1, . . .

because

kn+ 1
2
(u) = e−uqn(u), u > 0, (2)

where qn is a polynomial of degree n with positive coefficients, called the nth Bessel
polynomial. It is given as

qn(u) =
n∑

k=0

α
(n)
k uk, (3)

where

α
(n)
k = (−n)k2k

(−2n)kk!
. (4)
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The first examples of these polynomials are

q0(u) = 1, q1(u) = 1 + u, q2(u) = 1 + u +
u2

3
.

Those properties and further (including historical) information on Bessel polynomials can be
found in Berg and Vignat (2008), Gálvez and Dehesa (1984) and the references therein.

Cufaro Petroni’s second conjecture concerns the asymptotic behavior of the density of the
c-fold convolution of pν .

Conjecture 2. For every c > 0 and ν > 0, the asymptotic behavior of the c-fold convolution
p∗c

ν is given by

p∗c
ν (x) ∼ cAν

x2ν+1
, x → +∞.

Cufaro Petroni’s last conjecture is an extension of conjecture 1 to the c-fold convolution p∗c
ν

as follows.

Conjecture 3. Conjecture 1 extends to non-integer sampling times c under the following form:
for all ν0 > 0 and all c > 0,

p∗c
ν0

(x) =
∫ +∞

ν0

1

c
pν

(x

c

)
Qν0,c(dν)

for some distribution Qν0,c(ν).

In this paper, we show that conjecture (1) holds true and give an extended version of it;
likewise, we prove conjecture (2). We were unable to prove or disprove conjecture (3), but we
disprove a discrete version of it in the case where ν = n + 1

2 with n ∈ N.

Moreover, we consider in the rest of this paper the multivariate context: all Student
t-variables are supposed rotation invariant d-dimensional vectors. The multivariate Student
t-density is given, for x = (x1, . . . , xd) ∈ R

d by

pν(x) = Ad,ν(1 + |x|2)−ν−d/2, Ad,ν = �
(
ν + d

2

)
�(ν)�

(
1
2

)d
,

where

〈x, y〉 =
d∑

i=1

xiyi, |x| = 〈x, x〉 1
2 , x, y ∈ R

d .

3. First conjecture: the odd degrees of freedom case

Cufaro Petroni’s first conjecture (Cufaro Petroni 2007, proposition 5.2) is that if Xi is a set
of independent Student t-distributed random variables with f = 2n + 1, n ∈ N degrees of
freedom, then the density of the distribution of the normalized Nth step of the random walk

N−1ZN = 1

N

N∑
i=1

Xi

is written as

v(x) =
nN∑
k=n

β
(n,N)
k pk+ 1

2
(x) (5)

with β
(n,N)
k � 0, n � k � nN. We extend and prove this conjecture as follows.

3
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Theorem 1. If N ∈ N and

YN =
N∑

i=1

aiXi ,

where ai are positive numbers with sum 1 and Xi are independent d-variate Student t-
distributed, each with fi = 2ni + 1(ni ∈ N) degrees of freedom, then the density of YN

is
n1+...+nN∑

j=min(n1,...,nN )

βjpj+ 1
2
(x),

where the coefficients βj are non-negative with sum 1 and depend on N and on coefficients
a1, . . . , aN and n1, . . . , nN but not on the dimension d.

Proof. The characteristic function of the d-variate Student t-distribution is

ϕν(u) = kν(|u|)
where the function kν is given by (1). Since for νi = ni + 1

2 , this function reads
kνi

(|u|) = e−|u|qni
(|u|) where qni

is the Bessel polynomial of degree ni , the result follows
from Berg and Vignat (2008, theorem 2.6):

qn1(a1u)qn2(a2u) · · · qnN
(aNu) =

L∑
j=l

βj qj (u), u ∈ R (6)

with non-negative coefficients βj with sum 1 and l = min(n1, . . . , nN), L = n1 + · · · + nN .
�

As a particular case, choosing ai = 1
N

, 1 � i � N for N ∈ N, we deduce that the

coefficients β
(n,N)
k in (5) are positive, and thus the density v is a convex combination of

Student t-distributions with odd degrees of freedom.
We are not able to provide an expression for the coefficients β

(n,N)
k which can be used

directly to see the non-negativity. Using Carlitz’ formula, see Berg and Vignat (2008),

un =
n∑

j=0

δ
(n)
j qj (u), n = 0, 1, . . . (7)

with

δ
(n)
j =

⎧⎪⎨
⎪⎩

(n + 1)!

2n

(−1)n−j (2j)!

(n − j)!j !(2j + 1 − n)!
for

n − 1

2
� j � n

0 for 0 � j <
n − 1

2

, (8)

it is possible to write

N∏
j=1

qnj
(aju) =

n1∑
k1=0

· · ·
nN∑

kN=0

⎛
⎝ N∏

j=1

α
(nj )

kj
a

kj

j

⎞
⎠ k1+···+kN∑

i=0

δ
(k1+···+kN )
i qi(u),

which gives an expression for βj in (6), but because of the varying sign of δ
(n)
j , it is not possible

to see directly that βj � 0.
If aj = 1/N and n1 = · · · = nN = 1, i.e. the case of f = 3 degrees of freedom

where q1(u) = 1 + u, this formula simplifies to the expression given in Cufaro Petroni (2007,
proposition 5.2). It is claimed that the expression is positive, but no convincing argument is
given.

4
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4. Second conjecture: the asymptotic behavior of the Student process

A second property studied by Cufaro Petroni is the asymptotic behavior of the distribution
of the random walk ZN ; in the case of f = 3 degrees of freedom

(
ν = 3

2

)
, he obtains the

following result (Cufaro Petroni 2007, proposition 5.1): for all c > 0,

p∗c
3
2
(x) ∼ 2c

πx4
, x → +∞.

We now provide an extension of this result to any value f = 2ν (ν > 0) of degrees of freedom.
Cufaro Petroni’s argument is via Fourier analysis. This argument becomes very technical if
one tries to generalize it to arbitrary degrees of freedom. Our proof is based on results about
subexponential distributions.

Theorem 2. For any c > 0 and ν > 0, the density of the c-fold convolution of the d-variate
Student t-distribution behaves asymptotically as

p∗c
ν (x) ∼ cAd,ν

|x|2ν+d
, |x| → +∞.

Proof. The proof is based on a series of lemmas given in the last section. The d-variate
Student t-distribution is subordinated to the d-variate Gaussian semigroup

gt (x) = (4πt)−d/2 exp

(
−|x|2

4t

)
, t > 0, x ∈ R

d

by the inverse Gamma density, i.e.

pν(x) =
∫ +∞

0
gt (x) dHν(t),

where Hν(t) is the inverse Gamma distribution with density

hν(t) = Cν exp

(
− 1

4t

)
t−ν−1, t > 0, Cν = 1

22ν�(ν)
.

From this representation we deduce in lemma 1 the same representation for the c-fold
convolution power of the Student t-density, namely

p∗c
ν (x) =

∫ +∞

0
gt (x) dH ∗c

ν (t).

We note that this property is very general in the sense that it holds for any infinitely
divisible probability distribution dH(t) on [0,∞[.

The next step of the proof is the derivation of the asymptotic behavior of the c-fold
convolution power of the inverse Gamma density hν(t): by lemma 2, this reads

h∗c
ν (t) ∼ cCνt

−ν−1, t → +∞.

Finally, we show in lemma 4 that this asymptotic behavior implies, by subordination to
the Gaussian semigroup, the desired asymptotic behavior of the c-fold Student t-convolution.

�

As a consequence of this theorem, we deduce the following.

Corollary 1. In the case where the number of degrees of freedom 2ν = 2n + 1 is an odd
integer and with integer N, the coefficient β(n,N)

n in (5) reads

β(n,N)
n = 1

N2n
.

5
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Proof. Since the coefficients β
(n,N)
k do not depend on the dimension d, we consider the case

d = 1. The function v in (5) is the density of the normalized random walk 1
N

∑N
i=1 Xi and thus

is written as

v(x) = Np∗N

n+ 1
2
(Nx).

By theorem 2,

v(x) ∼ N2
An+ 1

2

(Nx)2n+2
=

An+ 1
2

N2n
x−2n−2, x → +∞.

Since each Student t-distribution pk+ 1
2

in (5) has asymptotic behavior

pk+ 1
2
(x) ∼ Ak+ 1

2
x−2k−2,

we deduce that

v(x) ∼ β(n,N)
n An+ 1

2
x−2n−2.

Identification of the two equivalents yields the result. �

5. Third conjecture: non-integer sampling time and odd degrees of freedom

In this section, we prove by contradiction the following result.

Theorem 3. For all c > 0, c /∈ N and ν = n + 1
2 , n ∈ N, the univariate density p∗c

ν cannot be
expanded as

p∗c

n+ 1
2
(x) =

+∞∑
j=0

βj

1

c
pj+ 1

2

(x

c

)
, (9)

with parameters βj � 0.

Proof. We remark that integrating equality (9) over R yields
∑+∞

j=0 βj = 1 so that the sequence
(βk) is summable. The Fourier transform of (9) reads

kc

n+ 1
2
(u) =

+∞∑
j=0

βj exp(−cu)qj (cu), u > 0

where qj is the Bessel polynomial of degree j. Thus, by lemma 6, the sum
∑+∞

j=0 βjqj (cu) is
an entire function, so that the function kc

n+ 1
2
(u) extends to an entire function. But

kc

n+ 1
2
(u) = exp(−cu)[qn(u)]c,

and since c is not an integer, the function qc
n is not holomorphic at any of the complex roots of

qn, which concludes the proof. �

6. Lemmas for the proof of theorems 2 and 3

Lemma 1. The c-fold convolution of the density pν reads, for all c > 0 and ν > 0,

p∗c
ν (x) =

∫ +∞

0
gt (x) dH ∗c

ν (t).

6
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Proof. Let us consider the d-dimensional Fourier transform F of the right-hand side

F
[∫ +∞

0
gt (x) dH ∗c

ν (t)

]
(y) =

[∫ +∞

0
F[gt (x)] dH ∗c

ν (t)

]
(y)

=
∫ +∞

0
exp(−t |y|2) dH ∗c

ν (t).

This last integral is nothing but the Laplace transform L of H ∗c
ν evaluated at |y|2, and thus

coincides with

L(Hν)
c(|y|2) =

(∫ +∞

0
exp(−t |y|2) dHν(t)

)c

= (F(pν(x)))c(y).

The result follows by considering the inverse Fourier transform. �

Lemma 2. For all c > 0 and ν > 0, the c-fold convolution of the inverse Gamma density has
asymptotical behavior

h∗c
ν (t) ∼ cCνt

−ν−1, t → +∞.

Proof. Since

hν(t) = Cν exp

(
− 1

4t

)
t−ν−1 ∼ Cνt

−ν−1, t → +∞,

the tail function H̄ν(t) = 1 − Hν(t) of the inverse Gamma distribution has the asymptotic
behavior

H̄ν(t) ∼ Cν

ν
t−ν, t → +∞.

This tail function is thus regularly varying and, by Feller (1950, p 278),

H̄ ∗2
ν (t) ∼ 2Cν

ν
t−ν

where H̄ ∗2
ν is the tail of H ∗2

ν , so that the inverse Gamma distribution is subexponential in the
sense of Chistyakov, cf Chistyakov (1964). Since it is moreover infinitely divisible, we deduce
by Embrechts et al (1979, corollary 1, p 340) that for all c > 0

H̄ ∗c
ν (t) ∼ cCν

ν
t−ν, t → +∞.

By lemma 3 the density h∗c
ν (t) is ultimately decreasing, so the result follows by the application

of the monotone density theorem (Bingham et al 1987). �

Lemma 3. The c-fold convolution of the inverse Gamma density is ultimately decreasing.

Proof. The inverse Gamma density hν(t) is a generalized Gamma convolution, and so is the
convolution power h∗c

ν , cf Steutel and van Harn (2004, p 350). Since its left extremity is 0,

we deduce from Steutel and van Harn (2004, proposition 5.5) that it is unimodal, and thus
ultimately decreasing. �

Lemma 4. The asymptotic behavior of the c-fold Student t-convolution is

p∗c
ν (x) ∼ cAd,ν

|x|2ν+d
, |x| → ∞.

Proof. Since by lemma 2

h∗c
ν (t) ∼ cCνt

−ν−1,

7
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for any a and b such that a < cCν < b, there exists t0 > 0 such that for all t > t0,

at−ν−1 � h∗c
ν (t) � bt−ν−1.

From ∫ +∞

0
gt (x)h∗c

ν (t) dt =
∫ t0

0
gt (x)h∗c

ν (t) dt +
∫ +∞

t0

gt (x)h∗c
ν (t) dt,

it follows that∫ t0

0
gt (x)h∗c

ν (t) dt +
∫ +∞

t0

gt (x)
a

tν+1
dt �

∫ +∞

0
gt (x)h∗c

ν (t) dt

�
∫ t0

0
gt (x)h∗c

ν (t) dt +
∫ +∞

t0

gt (x)
b

tν+1
dt.

But the integral
∫ t0

0 gt (x)h∗c
ν (t) dt is o(|x|−2ν−d) for |x| → ∞ because∫ t0

0
gt (x)h∗c

ν (t) dt =
∫ t0

0

1

(4πt)d/2
exp

(
−|x|2

4t

)
h∗c

ν (t) dt

� exp

(
−|x|2

4t0

)∫ t0

0

1

(4πt)d/2
h∗c

ν (t) dt.

A simple computation gives
∫ +∞

t0

gt (x)t−ν−1 dt = |x|−2ν−d 22ν

πd/2

∫ |x|2
4t0

0
exp(−u)uν+ d

2 −1 du ∼ |x|−2ν−d 22ν

πd/2
�

(
ν +

d

2

)

hence

lim sup
|x|→∞

|x|2ν+d

∫ +∞

0
gt (x)h∗c

ν (t) dt � lim sup
|x|→∞

|x|2ν+d

∫ +∞

t0

gt (x)
b

tν+1
dt

= b22ν

πd/2
�

(
ν +

d

2

)

and

lim inf
|x|→∞

|x|2ν+d

∫ +∞

0
gt (x)h∗c

ν (t) dt � lim inf
|x|→∞

|x|2ν+d

∫ +∞

t0

gt (x)
a

tν+1
dt

= a22ν

πd/2
�

(
ν +

d

2

)
,

so that finally∫ +∞

0
gt (x)h∗c

ν (t) dt ∼ c
22ν

πd/2
�

(
ν +

d

2

)
Cν |x|−2ν−d = cAd,ν |x|−2ν−d .

�

Lemma 5. For fixed k, the coefficients α
(n)
k of the Bessel polynomial of degree n � k are

increasing in n and

lim
n→+∞ α

(n)
k = 1

k!
.

Proof. From (4) we get

α
(n)
k = 1

k!

k−1∏
j=1

n − j

n − j

2

� 1

k!
,

8
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where each of the (k − 1) terms of the product

n − j

n − j

2

= 1 −
j

2

n − j

2

is increasing and converges to 1 with n. �

Lemma 6. Consider the infinite series (S) equal to

+∞∑
k=0

ckqk(z),

where qk(z) is the kth Bessel polynomial and ck ∈ C. Then the three following assertions are
equivalent:

(i) (S) is absolutely convergent for z = 0,
(ii) the sequence (ck) is absolutely summable,

(iii) the series (S) converges absolutely and uniformly on any compact subset of C.

Proof. (i) ⇒ (ii) since qk(0) = 1.

(ii) ⇒ (iii) since

|cnqn(z)| � |cn|qn(|z|) � |cn|
n∑

k=0

|z|k
k!

� |cn|
+∞∑
k=0

|z|k
k!

� |cn| exp(K)

for some constant K. The first inequality holds since all the coefficients α
(n)
k of the Bessel

polynomial qn are positive; the second inequality is a consequence of the majorization α
(n)
k � 1

k!
proved in lemma 5; the third inequality is straightforward, and the last inequality ensues from
the assumption that z belongs to a compact subset of C. Since the sequence (cn) is assumed to
be absolutely summable, the absolute and uniform convergence of (S) is a direct consequence
of the above majorization.

(iii) ⇒ (i) trivially. �

7. Conclusion

In this paper, we have proved two of the conjectures as expressed by Cufaro Petroni (2007),
and disproved a simple version of the third conjecture. We note that these results extend
naturally to d-dimensional Student t-vectors with correlated components, with density

pν(x) = Ad,ν

|K| (1 + xtK−1x)−(ν+ d
2 )

and the characteristic function

ϕ(u) = kν(
√

utKu)

where K is a symmetric and positive definite matrix. Theorem 1 holds unchanged and the
asymptotic result of theorem 2 still holds by replacing constant Ad,ν by Ad,ν

|K| 1
2

.
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